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The description of relaxation by the methods of classical statistics and mechanics 
has a number of advantages, the chief one of which is obviously the opportunity of 
using in place of a large number of balance equations for individual levels a sin- 
gle transport equation for a distribution function over vibrational energy and, in 
a number of cases, the additional opportunity for more general and clearer consid- 
eration of the various factors characterizing intra- and intermolecular interac- 
tions. A version of the classical theory for vibrational relaxation during weak 
interaction of molecules with a gas is diffusion theory in which a Fokker--Planck 
diffusion equation serves as the transport equation. In particular, a detailed 
study of the influence of anharmonicity at various values of the adiabaticity param- 
eter $o on the kinetic characteristics of the process was carried out [2] within 
the limits of this theory on the basis of a solution of the diffusion equation from 
[i]; earlier [3], vibrational relaxation in a light inert-gas medium was considered 
in the diffusion approximation (for harmonic and anharmonic oscillators) which cor- 
responds to relaxation for nonadiabatic interaction in a uniform temperature field 
(~o § 0) as shown in [i]. The possibility of describing vibrational kinetics with- 
in the framework of diffusion theory involves two basic problems: i) the possibility 
of approximating the transport equation for classical oscillators with a Fokker-- 
Planck equation, and 2) the possibility of describing the relaxation of quantum 
oscillators by classical methods or the correspondence of classical and quantum 
theory of relaxation for weak interaction of molecules with a medium. The first 
of these problems is considered here. 

w General Form of Conditions 

According to [4], the linear integrodifferential equation which is taken as the starting 
point in the theory for relaxation of molecules in a medium consisting of particles in a uni- 
form temperature field leads to a differential equation of second order in divergent form 
when boundary effects are neglected: 
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where f(e, t) is the distribution function over vibrational energy ~; fo(~) is its equilibrium 
value when t § co; ~ = f/fo; Ban is a conversion moment of second order, for which we assume 

here 

<(A')2n> __~ <(A~) 2'*> (1.3) 
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A~ is the change in e per collision; the angle brackets denote averaging over all collision 
parameters; To is the mean free time of the molecules; D n am are certain coefficients [4] of 

which we use D22 = i/4!, Da2 = 2/6!, Daa = --3/6!, and IDn'2n_2/Dn+1,anl = i0. 

If only the first term is kept in Eq. (1.2), Eq. (I.i) transforms into the Fokker--Planck 
equation used in [1-3] : 
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The c o n d i t i o n s  f o r  a p p r o x i m a t i o n  o f  Eq. ( 1 . 2 )  by a F o k k e r - P l a n c k  te rm* a r e  d i s c u s s e d  b r i e f l y  
i n  g e n e r a l  t e rms  i n  [ 4 ] .  

In this paper, we confine ourselves to the first three terms in Eq. 
j3, and we assume 

1/11 >> l&l, lhl >> ;hl 

for the desired approximation conditions. 

In some cases of departure of the system from equilibrium conditions where the first 
term in Eq. (1.2) is much greater than the succeeding terms, it can be reduced to relations 
for the conversion moments. 

In the near-equilibrium stage, t > r r (T r is the relaxation time); also for systems 
with insignificant deviation from equilibrium, by assuming the validity of the inequality 

t~ 2n-- Z Z-kt O d o 0 
~ ~ ( 1 . 6 )  

terms with ~l~/3~Z, I > 2, can be neglected in Eq. (1.2)and the first relation in Eqs. (1.5) 
is written in the form 

B4o->> I I ~  ~ I ,.~ ~ [ ~-~-i (B,I ~ I" (z. 7) 

The relation (i. 6) is particularly realized for an initial Boltzmann distribution with tem- 
p e r a t u r e  To at the time t such that Ii-- To/T) le-t/Tr << i. 

Using fo ~ e_r ' Eq. (1.7) takes the form 

(kT)2- ~ (~)' Y = k'~--' 

where m(e) is the vibrational frequency of a molecular oscillator having an energy ~; T is 
the temperature of the uniform temperature field. 

In the essentially nonequilibrium stage (t << ~r), relaxation of the distribution is 
such that one can set ~l~/3y~ = ~/3y (in particular, this is satisfied for an initial Boltz- 
mann distribution with To >> T) and the condition equivalent to (1.8) is written 

-- i ~,-o~+~ry, l, (1.~) B~ >> q~ 
The c o n d i t i o n  ( 1 . 9 ) ,  l i k e  t h e  c o n d i t i o n  ( 1 . 8 ) ,  does  n o t  depend on t h e  w i d t h  (or  p r o p e r -  

t i e s )  o f  t h e  i n i t i a l  d i s t r i b u t i o n  b u t  o n l y  on t h e  p r o p e r t i e s  o f  t h e  c o n v e r s i o n  moments f o r  
a g i v e n  t e m p e r a t u r e  T o f  t h e  u n i f o r m  t e m p e r a t u r e  f i e l d ;  t h i s  i s  a c o n s e q u e n c e  o f  t h e  f a c t  
t h a t  ( 1 . 9 )  was a c t u a l l y  o b t a i n e d  f o r  a r a t h e r  b r o a d  d i s t r i b u t i o n .  

Le t  t h e  i n i t i a l  d i s t r i b u t i o n  have  a C a u s s i a n  shape ,  

](e, 0) ~ A e x p { - -  (-~-~(e p -- eo)~}, ! f (e, O) de = 1.. (1 .10 )  

t h e n  t h e  d e s i r e d  c o n d i t i o n  c o r r e s p o n d s  to  ( 1 . 9 )  when p >> ! and P l Y -  Yo[ <1 f o r  t << Tr- 
A d d i t i o n a l  c o n s i d e r a t i o n  i s  r e q u i r e d  when p >> 1 s i n c e ,  a s  i s  w e l l  known, t he  Fokker - -P lanck  
e q u a t i o n  does  n o t  d e s c r i b e  t h e  i n i t i a l  t ime  f o r  r e l a x a t i o n  o f  a d i s t r i b u t i o n  w i t h  a maximal -  
l y  small dispersion. Very rapid "smearing" after t = to, to ~ 5~o (B~p > i), of ~he initial 
distribution makes it possible to use this equation from the time t ~> to [5]. For times 
t ~> to, t <<rr (to << ~r), approximation conditions like (1.9) must be satisfied. Expansion 
of Eq. (1.2) also makes possible the evaluation of the upper value of the parameter p (or the 
lower value of To, To << T, for a Boltzmann distribution), i.e., the minimum width of the 
initial distribution for which the diffusion approximation is applicable also for times 0 < 
t < to; several such estimates are given below. 

(1.2), j = jl + j2 + 

(1.5) 

*Note that here the term containing B2 is understood to be the Fokker--Planck term; actually, 
it includes the two terms (with <A> and <Ai>) which appears in the usual Fokker--Planck equa- 
tion. 



Further definition of the conditions (1.5), (1.8), and (1.9) requires knowledge of the 
conversion moments Ban. 

w Calculation of the Conversion Moments Ban 

Calculation of the quantity h~ is achieved here using a model of an "oscillator with ex- 
ternal force"; i.e., it is assumed that the change in vibrational energy of a molecule after 
a collision is equivalent to the change in energy of an oscillator through the action of an 
external force F(t) arising as the result of interaction of colliding particles. 

We have 

A e =  ~ F(t) r(t)dt, 
,J 

_ ~  (2.1) 
where r(t) = dr/dt and r(t) is the trajectory of the vibrational motion of the oscillator; 
F(t) is the component of the force along the axis of the molecule; F(t) is assumed an even 
function of t in the following. 

We designate ~o and ~ as the fundamental vibrational frequency and reduced mass of the 
oscillator; r,(t) = r(t) in the absence of an external force; r e is the equilibrium value of 
r,(t). 

We first consider the case of a harmonic oscillator, 

r ,  - -  re = ro s i n  (COot + r ro = ~oo " ( 2 . 2 )  

As i s  w e l l  known [6] ,  ~:(t) f o r  t h i s  model can  be r e p r e s e n t e d  i n  t h e  form 

(t) = Re [e ~~ F (t) dt + COoro cos r " tCOoro sin q~o ( 2. 3) 

Using Eq. (2.3), we have from Eq. (2.1) 

t F(t)e~O)otdt F(z)e-~o~.~dz+coorocos(Po F(t)e~CO.tdt ,~ 1 h ~ = ~ -  2~ { F1 {2 + o.~oro cos ~oF~'; (2 .4 )  

f l =  t f ( t ) e  ~~176 F(t)coscootdt. (2 .5 )  
- - o o  ~ o o  

Equations (2.4) and (2.5) agree with values of he obtained by somewhat different means 
in [6] under identical conditions. 

Using Eq. (2.4), we have 

c o s  (2.6) 

Using Eq. (2.2) and averaging over all random values of the initial phase ~o of the vi- 
brations o f  t h e  o s c i l l a t o r s  and over  c o l l i s i o n s ,  we o b t a i n  f rom Eq. (2 .6 )  

!5 

- |(2s)ll (2n - -  2s)! s! y ,  i F I  [3 ( 2 . 7 )  

the angle brackets here and below [as in Eq. 
eters but per unit time. 

The quantity 

(1.3)] denote averaging over all collision param- 

-- '" ~ { F l I 2 1 2 /  <<l . (2.8)  

-..),tJ.r 
i s  t a k e n  as  a p a r a m e t e r  which c h a r a c t e r i z e s  weak i n t e r a c t i o n  of  o s c i l l a t o r s  w i t h  a medium, 
and a l s o  
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Using  Eqs.  ( 2 , 8 )  and  ( 2 . 9 ) ,  Eq. ( 2 , 7 )  can  be  w r i t t e n  i n  t h e  fo rm 

-- 2 n ( 2 n - l ) , ! / ~ _ ,  n (  {__L 1 "~'\ [ ' ~  (2n)llnl (kT y~;'--i ] 
Bo.= ,,! t,#T) \\2~,~.rlF~l ~ ) f f  Li~- ~ (2n 2 k ) ! l ( n - - k ) ! 2 M  X ~(-~/ I I  ~,,+, (2.10) 

so that correct to terms of the order ~n/y, the conversion moment of second order for har- 
monic oscillators is 

k=0 

Equation (2.11) can also be obtained if one uses in place of Eq. (2.1) 

A e =  ~ F( t )  r . ( t ) d t ,  (2 .12)  

which corresponds to the expression for Ae used in [I] for calculating the oscillator dif- 
fusion coefficient B = (I/=)B2 [7]. 

We next obtain B2n for anharmonic oscillators; let 

r , (~  = r(8, cos (~t -+- ~0)), ~ = ~(e), ( 2 .13 )  

t h e n  u s i n g  Eq. ( 2 . 1 3 ) ,  we have  u n d e r  t h e  a p p r o x i m a t i o n  (2 .12 )  ( s ee  [1] a l s o )  

Assuming 

[$ ] 2" 

~ i E$(Z) COS/;ZdZ ~ Fk~o = F (t) cos kotdt ,  rk = ~- 

/ i__ Fm~Fko~> << r 2 / {  [ 2 >  rmr~ \ 2p \ 2-~[ F1 

t o  t e r ms  o f  t h e  o r d e r  o f t  

/ 1 [2)~+15 

/ i p)'/X 

we obtain for  the anharmonic_ osc i l l a to rs  

z (,~t -,'- %. 

(m, k > l), (2.14) 

( ~  << i) (2.15) 

B2n-----(2n--t). v coo [ ~ m~r2 '%n / r  I )n 5 

Equation (2.16) can be obtained from Eq. (2.12) by using Eq. (2.2) if ~o is replaced by m(s) 
and ro by rl in Eq. (2.2). Equation (2.16) corresponds to a calculation of Ban in which the 
anharmonicity is taken into account in the approximation (2.14) and the interaction with the 
medium in the approximation y >> ~ml, which makes it possible to use Eq. (2.12). 

w Condition for Applicability of Diffusion Approximation 

Using Eq. (2.11), we obtain from Eq. (1.8) the desired Conditions for a process (or 
stage of a process) with slight deviation from equilibrium 

{t << 2y << 8/{t. (3.1) 

Somewhat weaker conditions may be valid in place of (3.1) in a limited energy range; in par- 
ticular, ~i << 4y is sufficient when y ~ 1/8 and 61 << 8/y when y ~ i0. 

%It should be kept in mind that ~k and FI~ transform, respectively, into ~k and FI when m = 



We correspondingly obtain from Eq. (i.i0) conditions for the essentially nonequilibrium 
stage of relaxation of a sufficiently broad initial distribution: 

~ << ~ << 1/~ (3 .2)  

~ << 2y for y ~ 2/3; y << 8/~ for 4 ~ y ~ 15; y << 4/~ for y >> i (y ~ 20). 

For a comparatively narrow initial distribution, an estimate of a condition such as 
(3.2) can be obtained for t << to by substituting the initial value of ~ in Eq. (1.2); we 
find as a result that for a Boltzmann distribution with To << T the right-hand inequality in 
(3.2) should be replaced by yT/To = e/kTo << i/~z and for a distribution of the form (i.i0) 
with p >> 1 in the region [y -- yo[ S l/p, the right-hand inequality should correspondingly 
be replaced by--yoP << i/~z, yo > i. Consequently, the weaker the interaction (~z << i), the 
better the diffusion approximation describes relaxation of a distribution with small disper- 
sion. 

The conditions (3.1) and (3.2) follow from the first relation in Eq. (1.5). It can be 
shown that the second inequality in (1.5) is satisfied automatically; considering the expres- 
sion for j, in the approximation ~i << i, ~n ~ ~i, we find [J2[ > [j,[ with the exception of 
values of y for which the right sides of Eqs. (1.8) and (1.9) go to zero. For those values 
of y [y ffi 2 • /2 for Eq. (1.8) and y = 3 • ~ for Eq. (l.9)],[instead of (3.1) and (3.2), 
the weaker condition ~ << y2 << i/~ follow from [j,[ >> [j~ . 

The use of the exact value of Bzn from Eq. (2.10) instead of Eq. (2.11) leads to no 
marked change in the conditions (3.1) and (3.2) when ~z << i (~n ~ ~z). This means that with- 
in the limitations of the diffusion approximation, it is sufficient to calculate the coef- 
ficient B = (z/2)B2 by means of the simple equation (2.12). It is also noteworthy that Eqs. 
(i.i) and (1.2), strictly speaking, are valid in the region c >> [Ae[ or (on the average) 
y >> <A/kT>I/T ~ ~o so that the condition y > ~1 ~ ~o is necessary. 

The conditions above were obtained for harmonic oscillators. For anharmonic oscilla- 
tors, a similar discussion using Eq. (2.16) leads, on the whole, to replacement of the param- 
eter ~z by ~(~/~o) 2 = ~ (d in ~o~z/dy ~ i) in the conditions given above. There is some 
difference in the energy region close to the dissociation energy but this difference is not 
fundamental; this energy region requires special consideration and it is particularly neces- 
sary to calculate the coefficient B2n with an accuracy similar to the accuracy used in the 
calculation of B2 in [i]. The result will be physically distinguished from Eq. (2.16) by 
the consideration of multiquantum transitions. 

We consider what ensures the weak interaction condition ~z << l, ~mx << 1 during a vibra- 
tional-translational exchange. For this purpose, we use as an example similar to that used 
in [i] a well-known expression for F(t), 

_~ .. ~ .,'art F (t) al~v sen " F "  (3 .3)  Bt~ 

where ~ is a parameter of exponential form for the intermolecular potential; M = 2m~/(4~ + 
m); m and v are, respectively, the mass and relative velocity of the particles in the uniform 
temperature field. Equation (3.3) for F assumes: i) The change AE in oscillator energy as 
the result of a collision has no effect on the trajectory of particles in the uniform temper- 
ature field; 2) the intermolecular interaction potential depends linearly on the vibrational 
coordinate r(t); 3) collinear collisions make the main contribution to Ae. The last two 
assumptions are not important under the approximations (2.12) and (2.14), but the first can 
be written in the form [compare (3.1), (3.2)] 

<(As)~> ~-- TB~ << (kT) ~, i.e., Y~.o << 1 

[(3.3) overestimates the value of 5 in the case of a slightly adiabatic interaction]. 

After averaging the quantity ([Fz[2) k over v and using Eqs. (3.3) and (2.5), we have 

J( 1 )~ M Ik4.1 " (3.4) 
--W==~=Ik(~o), ~ k =  ~ I--~-' 

= = ~r 0 [ M ~ t12  

i0 



where ~, is the adiabaticity parameter and I k, when k = I, converts into the adiabaticity 
factor ~(Go) [I]. 

The integral Ik($o) was calculated in explicit form for the limiting cases ~o << ! and 
Go >> i. For the nonadiabatic interaction ~o << i, we obtain 

1~(~~ k' ( i -  ~ '3 ~ "'" ) k'---~ (3.6) 

For the adiabatic interaction to >> i, we obtain, by using the method of steepest descent,* 

In(~o) ~ 2~o)~k(k~o) l~ exp(--3(k~o) ~/~) (3.7) 

[in practice, Eq. (3.7) provides sufficient accuracy for evaluation under the condition 4k; 
exp(_2(G~/k ) :/3) < i]. When 2 ~ kGo 5 20, one can use the following approximation for I k" 
(~o): 

By r e p l a c i n g  mo by m and Go by ~ (G = Gom/~o) i n  Eqs. ( 3 . 4 ) - ( 3 . 8 ) ,  we o b t a i n  the va lues 
of <( (i/2pkT) IF,~l =)k> and ~k for anharmonic oscillators. 

We have from Eqs. (3.4)-(3.8) 

.~1 ~- ~ = 2M/~, ~n ~ ~ .  = (n + i)M/~; (3 .9)  

~ a  ~-- 5(M/~)~ z exp (--1,85'/n), (3. i0) 

~"-----"h'-~$) 'exp_- \7- 7 )' ~=~o'~'o~>1; 
M [ 2n ~2~ 2 t 2 ) 

~--~---~ [~-~-~) ~ e x p [ - - ~  , 2<n~-~20. (3.11) 

Setting ~ = ~o and G = ~ in Eqs. (3.10) and (3.11), we obtain ~n" 

Equations (3.9)-(3.11) show that the condition for a weak interaction, ~, < l, ~ < l, 
is satisfied if one of the following relations is realized: ~ = Gom/mo >> i, M/~ arbitrary 
or ~om/~o ~ 2, M/~ ~ i, 2M/~ < i, Go Z 0; Eqs. (3.10) and (3.11) make it possible to define 
conditions (1.8) and (1.9) somewhat better than Eqs. (3.1) and (3.2) do when ~ >> 1 but the 
difference is not basic. 

Thus, in order to evaluate the possibility of using the classical diffusion equation 
(1.4), it is necessary to compare the diffusion coefficient with the conversion moment of 
fourth order, i.e., B~ with B~. For applicability of Eq. (1.4) in the case of an oscillator 
excited by a force F(t), i~ is necessary that the parameter %m~ in Eq. (2.15) be small in 
comparison with unity; the energy region of applicability is limited by the condition {~x < 
e/kT < i/~. The condition for the smallness of ~ma is realized if the interaction is adi- 
abatic or the ratio between the masses of molecules and medium is the same as that for Brown- 
Jan particles. Calculation of~ (Ae);> by means of Eq. (2.12) and the applicability of Eq. 
(1.4) are of the same degree of approximation. 

LITERATURE CITED 

i. M.N. Safaryan, "Consideration of vibrational anharmonicities in the diffusion theory 
for vibrational relaxation of diatomic molecules," Dokl. Akad. Nauk SSSR, 217, No. 6 
(1974); M. N. Safaryan, Kinetics of Vibrational--Translational Exchange of Diatomic- 
Molecule--Anharmonic-Oscillator in an Inert Gas Medium, I. Diffusion Approximation, Pro- 
print No. 41, Institute of Problems in Mechanics, Academy of Sciences of the USSR (1974). 

2. M.N. Safaryan and O. V. Skrebkov, "Kinetics of vibrational--translational exchange of 
diatomic-molecule--anharmonic-oscillator in an inert gas medium," Fiz. Goreniya Vzryva, 
No. 4(1975). 

3. M.N. Safaryan and E. V. Stupochenko, "Theory of vibrational relaxation of diatomic mole- 
cules," Zh. Prikl. Mekh. Tekh. Fiz., No. 1 (1965); M. N. Safaryan and N. M. Pruchkina, 
'~ibrational relaxation of anharm~nic oscillators," Teor. Eksp. Khim., 6, No. 3 (1970)~ 

*In Eq. (3.7) the ratio of the masses of the atomic oscillators is assumed to be unity; it 
is necessary to introduce the appropriate factor for a heterogeneous molecule. 

II 



, 

5. 

. 

7. 

M. N. Safaryan, "Approximation of integrodifferential equation by Fokker--Planck equa- 
tion," Zh. Prikl. Mekh. Tekh. Fiz., No. 5 (1977). 
J. Keilson and J. Storer, "On Brownian motion, Boltzmann's equation, and the Fokker-- 
Planck equation," Q. Appl. Math., i0, No. 3 (1952); P. R. Berman, "Brownian motion of 
atomic systems: Fokker--Planck limit of the transport equation," Phys. Rev., 9, No. 5 
(1974). 
R. Takayanagi, "Vibrational and rotational transitions in molecular collisions," Progr. 
Theor. Phys., Suppl., No. 25 (1963). 
C. A. Brau, "Classical theory of vibrational relaxation of anharmonic oscillators," 
Physica, 58, No. 4 (1972). 

DECAY OF A PLASMA PRODUCED BY A PULSED BEAM OF ACCELERATEDELECTRONS IN 

AN He--Ne MIXTURE AT HIGH PRESSURE 

Yu. D. Korolev and A. P. Khuzeev UDC 537.521 

Increased interest has recently been shown in the low-temperature plasma produced 
by the action of electron beams on dense gases. This interest is due to the pos- 
sibility of investigating plasma-chemical reactions in highly nonequilibrium con- 
ditions [i] and also to the prospect of introducing new methods of pumping gas 
lasers: by recombination [2], charge transfer [3], the formation of complex com- 
pounds [4, 5], etc. The plasma in question is characterized by high rates of re- 
actions involving charged and neutral particles, which largely accounts for the 
difficulty of investigating such a plasma experimentally. For instance, problems 
of determining the kind of ions predominating in the plasma, the mechanism of re- 
combination decay, the nature of the luminescence on individual spectral transi- 
tions, etc., become nontrivial. In this paper we investigate the decay of a 
plasma in neon and in an He--Ne mixture at high gas pressure. 

w Experimental method 

The kinetics of recombination processes were investigated by the photoelectric method 
of recording the spectrum and measuring the decay of electron density in the plasma. The 
experimental apparatus is shown schematically in Fig. i. A beam of fast electrons from the 
accelerator i was injected into the gas cuvette through a window sealed with titanium foil 
20 ~ thick. The beam-current density was 25 A/cm 2, the length of the current pulse at the 
base was 1.5.10 -7 sec, and the electron energy was 200 keV. The time for recombination decay 
of the plasma greatly exceeded the duration of the beam current and, hence, the electron 
beam, ionizing the gas in the cuvette, determined the initial density of electrons and ions 

(no). 

The photoelectric system for recording of the emission spectrum consisted of an MDR-3 
grating monochromator 4, an FEU-38 photomultiplier 3, and an $8-2 dual-beam recording oscil- 
loscope 2. The resolving time of the spectrum recording channel was 25 nsec. 

An electric field was applied to the plasma by connecting a capacitor bank 6, charged 
from a voltage supply 5, to the anode 7 of the gas cuvette. The anode was a disk 4 cm in 
diameter. The cathode 8 was a brass grid with 0.2 x 0.2-mm a mesh. The interelectrode dis- 
tance was 4.5 cm. There were two reasons for applying a voltage to the plasma: for stabil- 
ization of the electron temperature and for determination of the variation of the electron 
concentration with time from the current across the gap. In the absence of the field the 
electron temperature is determined by the balance between the processes leading to heating 
and to cooling of the electrons [6-8]. The electrons are cooled by elastic and inelastic 
collisions with gas atoms. Fast electrons can be produced by ionization of the gas by the 
beam electrons, deexcitation of metastables by electron impact, production of electrons in 
metastable--metastable collisions, and so on. In the considered conditions (electron concen- 
tration n > i0 I~ cm -s, gas pressure ~i arm) the excess of electron temperature over the gas 
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